New Database-independent, Sequence-tag-based Scoring of Peptide MS/MS Data Validates Mowse Scores, Recovers Below-threshold Data, Singles out Modified Peptides and Assesses the Quality of MS/MS Techniques

Mikhail M. Savitski†*, Michael L. Nielsen† and Roman A. Zubarev†
†Laboratory for Biological and Medical Mass Spectrometry, Uppsala University, Uppsala, Sweden

Running title: S-score

*Corresponding author: Laboratory for Biological and Medical Mass Spectrometry, Uppsala University, Box 583, S-75123 Uppsala, Sweden. Telephone: +46 (0) 18 471 5729, Fax: +46 (0) 18 471 5729, Mikhail.Savitski@bmms.uu.se
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGC</td>
<td>Automated gain control</td>
</tr>
<tr>
<td>CAD</td>
<td>Collisionally activated dissociation</td>
</tr>
<tr>
<td>ECD</td>
<td>Electron capture dissociation</td>
</tr>
<tr>
<td>FTMS</td>
<td>Fourier Transform mass spectrometry</td>
</tr>
<tr>
<td>ID</td>
<td>Identification</td>
</tr>
<tr>
<td>LC</td>
<td>Liquid chromatography</td>
</tr>
<tr>
<td>LTQ FT</td>
<td>Linear trap quadrupole Fourier transform</td>
</tr>
<tr>
<td>m/z</td>
<td>Mass over charge ratio</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometry</td>
</tr>
<tr>
<td>M-score</td>
<td>Mascot score</td>
</tr>
<tr>
<td>MS/MS</td>
<td>Tandem mass spectrometry</td>
</tr>
<tr>
<td>PTF</td>
<td>Potentially true fragments</td>
</tr>
<tr>
<td>RST</td>
<td>Reliable sequence tag</td>
</tr>
</tbody>
</table>
Summary

The Mascot score (M-score) is one of the conventional validity measures in database identification of peptides and proteins by MS/MS data. Although tremendously useful, M-score has a number of limitations. For the same MS/MS data, M-score may change if the protein database is expanded. Low M-value may not necessarily mean poor match, but rather poor MS/MS quality. Besides, M-score does not fully utilize the advantage of combined use of complementary fragmentation techniques collisionally activated dissociation (CAD) and electron capture dissociation (ECD). To address these issues, a new database-independent scoring method (S-score) is designed that is based on the maximum length of the peptide sequence tag provided by the combined CAD and ECD data. The quality of MS/MS spectra assessed by S-score allows to filter out poor data (39% of all MS/MS spectra) before the database search, speeding up the data analysis and eliminating a major source of false positive identifications. Spectra with below-threshold M-scores (poor matches) but high S-scores are validated. Spectra with zero M-score (no database match) but high S-score are classified as belonging to modified sequences. As an extension of S-score, an extremely reliable sequence tag is developed based on complementary fragments simultaneously appearing in CAD and ECD spectra. Comparison of this tag with the database-derived sequence gives the most reliable peptide ID validation to date. The combined use of M- and S-scoring provides positive sequence identification from >25% of all MS/MS data, a 40% improvement over traditional M-scoring performed on the same Fourier transform MS instrumentation. The number of proteins reliably identified from E. coli cell lysate hereby increased by 29% compared to traditional CAD-only, M-score approach. Finally, S-scoring provides a quantitative measure of the quality of fragmentation techniques, such as the minimum abundance of the precursor ion, MS/MS of which gives the threshold S-score value of two.
Introduction

Protein identification using tandem mass spectrometry (MS/MS) (1-3) commonly encounters two problems. The first one is the well-know problem of assessing the reliability of identified data (“reliability issue”). The second problem is the fact that a large portion of MS/MS data (often 90% or more) does not produce any useful identification (“efficiency issue”). These problems, as will be shown below, are inter-related.

The reliability problem is effectively addressed by a variety of different search engines e. g. Mascot (4), Sequest (5) etc. through the use of a scoring technique which evaluates the probability of a false positive identification. Sophisticated though as the evaluation methods might be, they have some limitations. One limitation is that, for the same MS/MS data, the score may significantly change if the content of the protein database is altered (protein addition to and deletion from the database are everyday phenomena), thus the score is dependent on whether the database accurately represents all occurring peptides. Another important limitation is that some poor-quality data that should not be trusted can give by pure chance a nearly perfect match and thus corresponding peptides are wrongly identified with a very high score. Thus, even above-threshold identifications call for confirmation by search-engine independent techniques (6-8). Conversely, a low score may arise due to two very different reasons, one being poor matching and the other one poor MS/MS data quality. Thus when an extremely high-quality, informative in terms of fragmentation MS/MS spectrum returns zero or below-threshold score, it is most often discarded, while the actual reason for the poor score is that the peptide in question is not present in the database. Alternatively, MS/MS spectrum of a peptide definitely present in the database will receive low score and be discarded because of the poor quality resulting from the presence of noise spikes, distorted isotopic distribution, missing fragments etc. For instance, Mascot search engine uses M-score(9) that takes into account the number of mismatched fragments and their relative abundances. The user doesn’t usually know what caused the poor M-score, unless a time-consuming manual inspection of the spectrum is performed. Thus the automatic routine
cannot make an intelligent decision, which should be in the first case to search the data in question allowing for modifications/mutations (10,11). In the second case, the decision should be to repeat the analysis or look for supporting information e.g. other peptides belonging to the same protein or to invoke the retention time (12). Thus a large fraction, perhaps more than 50%, of potentially useful MS/MS data are currently discarded, which aggravates the efficiency problem.

Complementing the M-score with another, database-independent score (13) that would evaluate primarily the quality of the MS/MS data, provides a means for distinguishing between the reasons for the poor M-score and for making the above intelligent decision, rendering the tedious and time-consuming manual data inspection superfluous. This has recently been realized by several groups who have designed database-independent scoring principles. For instance, Bern et al. assessed the quality of tandem MS data obtained on a low-resolution instrument and managed to filter out 75% of the unidentifiable spectra while losing only 10% of the identifiable spectra (13). They found that the number of peaks and their abundances (the guidelines for manual data quality inspection) had in fact little classification power compared to the number of peak pairs separated by an amino acid mass. In this study, we introduce and evaluate a new scoring principle (S-score) that differs from the scoring suggested by Bern et al (13) in several aspects. First, the S-score is based on just one parameter, the maximum length of peptide sequence tag, which simplifies the interpretation of the S-score value. Second, it utilizes high mass accuracy afforded by Fourier transform mass spectrometry (FTMS) (14). Finally, S-score used the MS/MS information that comes not only from the traditional Collision Activated Dissociation (CAD), but also from Electron Capture Dissociation (ECD) (15,16) performed on the same peptide.

The application of the S-score goes beyond the mere filtering out the “bad” spectra and includes salvaging some of the below-threshold data. Moreover, a further-verified sequence tag used for the S-score is compared to the search-engine sequence assignment, revealing cases of false positive identifications. In some cases, the sequence tag immediately reveals
the presence of a modified sequence, removing the need for a separate de novo sequencing program.

An important issue also pertaining to this discussion is the instrument performance, including also the performance of a given fragmentation technique. Traditionally, fragmentation efficiency has been measured as a ratio of the total abundance of fragmentation products and the abundance of the precursor ion before fragmentation (17). This is a general approach that is however silent about the information quality of the data. For instance, the same efficiency could be assigned to two different MS/MS peptide spectra, one containing a single but very intense peak corresponding to the NH$_3$ loss from the precursor ion, and the other one containing low-intensity but extensive backbone fragmentation. Clearly, the information content of these two MS/MS spectra would be different. We will demonstrate the applicability of the S-score for quantitative assessment of the information content in peptide MS/MS spectra.

Experimental Procedure

Mass Spectrometry

All experiments were performed on an Agilent 1100 nanoflow system coupled to a 7-tesla hybrid linear ion trap Fourier transform mass spectrometer (LTQ FT, Thermo, Bremen, Germany), equipped with a nanoelectrospray ion source (Proxeon Biosystems, Odense, Denmark) as previously described (18). Briefly, 70µg of an *Escherichia coli* whole cell lysate was loaded onto a 1 dimensional gel, and the protein bands were visualized with colloidal Coomassie Blue. The gel lane was excised into 20 equally sized fractions, and finally the proteins were reduced, alkylated and in-gel digested with modified sequence grade Trypsin (Promega, Madison, WI) as described previously in the literature (19). Samples were vacuum-centrifuged in order to remove all organic solvents, and prior to mass spectrometric analysis reconstituted into 20 µL of HPLC water containing 0.1% TFA. Mass spectrometric experiments were performed using unattended data-dependent acquisition in which the mass
spectrometer automatically switches between a high-resolution survey scan (R = 100,000) followed by consecutive ECD and CAD fragmentation (R = 25,000) of the two most abundant multiply-charged peptides eluting at this moment from the nanoLC column. A total number of 20 samples of an *E coli* lysate were analyzed, and prior to data-mining all acquired dta-files were combined for more thorough analysis.

In the previous analysis (18) the numbers of uniquely identified proteins for each gel band (sample) were calculated and then added together. Here, instead the number of unique proteins from the combined gel strips was derived. Thus the number of proteins identified by using the complementary pairs approach was 224 in this case compared to 256 reported earlier.

S-score description

The S-score was calculated from the so called dta-files that contain the mass and the charge state of the precursor, as well as the m/z values and intensities of all the fragment ion peaks in the spectrum above a certain cut-off intensity value. For every precursor, two dta-files are present, one representing CAD and the other ECD fragmentation.

In order to build a sequence tag that serves as the basis for the S-score, the program takes de-isotoped, neutral CAD fragment masses (potentially true fragments, *PTF*), adds the molecular mass and the mass of a water molecule to the peak list and builds a sequence ladder (tag) between them, fitting masses of amino acids combinations.

In order to create a *PTF* list the data in the CAD and ECD dta-files was deisotoped and charge-deconvoluted (20) to the neutral state. Ion fragments of monoisotopic mass <800 Da appear often without their heavier isotopes due to the noise cutoff. In these cases, the neutral masses were derived assuming that the charge state of the peak cannot exceed the charge state of the precursor ion if the peak originates from a CAD dta-file and will be less than the charge state of the precursor if the peak originates from an ECD dta file (due to
charge reduction in ECD). Thus a peak without isotopes located at m/z=500.2 in a CAD spectrum of a 2+ precursor will be allowed to have a neutral mass of 500.2 Da and 1000.4 Da. Both these masses will be considered for the construction of complementary pairs.

A fragment ion M_c, I_c with neutral mass M_c and intensity I_c in a CAD dta-file of a peptide with neutral mass M will qualify for the PTF set if it passes at least one of the following tests:

a) It is an element of a “golden pair” (21). That means there is a corresponding fragment M_e, I_e in the ECD dta-file, that together with the CAD fragment ion satisfy one of the following equations:

\[
\begin{align*}
M_c - M_e &= -17.03 \\
M_c - M_e &= 16.02 \\
M_c + M_e - 17.03 &= M \\
M_c + M_e + 16.02 &= M
\end{align*}
\]

To reduce the computational redundancy and uncertainty, the algorithm primarily targets y-ion sequence tags. Thus if M_c is identified as a b-ion (satisfies (1) or (4)), the mass of the complementary y-ion is calculated using the peptide mass and added to the list instead of M_c. Note that the total amount of information in the fragment list remains unaltered.

b) It is an element of a “complementary pair”. That means there is a corresponding fragment ion M_c, I_c in the same CAD dta-file satisfying the following equation:

\[
M_c + M_c = M
\]

Here of course y-ions are indistinguishable from b-ions.

c) It is the first peak in an isotopic cluster.
Furthermore, all masses of fragment ions have to pass through the peptide mass window (18) in order to qualify.

After adding to the PTF set of qualified masses the mass of H$_2$O and the neutral mass of the peptide M, (the two additional masses are added in order to improve the length of the y-ion sequence tag), the algorithm proceeds to find the longest possible amino acid sequence tag that can be constructed from these masses. The number of masses used for the construction of this tag minus one is the S-score value. The maximum allowed mass difference between adjacent masses was ΔM_s. The choice of 575 Da for the ΔM_s value will be explained in the next section.

The masses in the PTF set are sorted in an increasing order $\{m_1, ..., m_N\}$. The algorithm assigns to each value m_i, $1 \leq i \leq N$, a value of a running tag length T_L_i which is initially zero for all i. Following that, the masses m_i are selected in an increasing order $(i=1, 2, ..., N)$ and the corresponding values T_L_i are determined for each mass m_i according to the following recipe:

First, the differences $\Delta_j = m_i - m_j$ are calculated for all $j<i$. Then the program goes through all Δ_j values and, if the current Δ_j equals to any combination of one or several amino acids and does not exceed the maximum allowed mass difference ΔM_s, then T_L_j accepts the value of $T_L_j + 1$ unless its current value is higher. After determining all T_L_i values, the largest T_L_i is selected and the value of this T_L_i is the S-score for this dta-file.

Reliable Tag

Besides the sequence tag that gives rise to the S-score, a “reliable” sequence tag, (RST) was constructed for each spectrum. The objective was to design the most reliable sequence tag available in mass spectrometry to date, and to use this tag to produce the most reliable
sequence identification. The RST construction is the following. Only fragment ions satisfying conditions a) and b) *simultaneously* are selected for the construction of this tag. The PTF masses of the tag are thus *doubly* confirmed. The maximum step difference for the reliable tag was chosen to be 398 Dalton. The justification for this will be given in the following section.

Results

To evaluate the significance of the S-score for characterizing the quality of MS/MS data, histograms of S-scores obtained for 2+ precursor ions were built (Figure 1). The expectation was that the S-score could provide a means of differentiation between good peptide spectra, on one hand, and poor or non-peptide spectra, on the other hand. The 2+ charge state was selected because it is the predominant one in the precursor population (75%) and also because we wanted to obtain the clearest possible picture by untangling the effect of different charge states.

Selection of \(\Delta M \)

The optimum \(\Delta M \) value was chosen by using two independent criteria. Criterion one measured the extent of bimodality (B) of the part of the analyzed data for 2+ peptides, (Figure (a-d)). The following simple formula was used for the figure of merit:

\[
B = \frac{\text{Max}_1 \times \text{Max}_2}{\text{Min}^2}
\]

where \(\text{Max}_1 \) and \(\text{Max}_2 \) were the two local maxima of the histogram and \(\text{Min} \) was the height of the lowest point between them. The step difference which yielded the highest \(B \) was 600 Da, (Figure 1f, solid line). The second criterion measured the difference between the mean values of the S-score distributions of assumed “good” and “bad” spectra. The criterion for “good” spectra was the presence of complementary pairs or golden pairs, the spectra which did not meet this criterion were deemed “bad”. We should mention that this was a rather
crude separation, but one thought to be sufficiently good for optimizing the ΔM_s value. This approach gave a maximum at 550 Da (Figure 1f, dashed line). A compromise between the two criteria was chosen, $\Delta M_s=575$ Da. In Figure 1a-d, the evolution of bimodality is shown, along with an abnormality in the abundance of the $S=2$ peak which originates at $\Delta M_s=500$ Da and increases with higher masses. This behavior is explained by the fact that, given a sufficiently small peptide mass e.g. 900 Da, a single cleavage site located in the middle of the peptide can give $S=2$, an increment of two from the previous value $S=0$. When the peptide mass is removed from consideration, this abnormality disappears, as seen in Figure 1e, (compare with Figure 1d).

Classification of MS/MS spectra

The prime purpose of introducing the S-score was to partition the acquired MS/MS data into three classes, A, B and C. Class A was reserved for data that has been identified by Mascot and whose credibility was proven either by the significance of the Mowse score or by the RST or both. Elements of Class B have not fulfilled the criteria for qualifying as class A data and in some cases Mascot has not even suggested a sequence for them, but according to the S-score they are most likely peptides with decent MS/MS spectra and should be worth pursuing further identification. Finally, class C consists of MS/MS data which according to the S-score either belongs to non-peptides or peptides with such poor MS/MS spectra that reliable identification is impossible and thus an attempt of identification would be counterproductive.

Ranking of A-data

In the conventional approach to proteomics, the peptide identification quality is synonymous to the M-score value. With the introduction of parallel S-scoring, this is no longer so. With this in mind, the following ranking procedure was devised.

The acquired MS/MS data was processed according to the scheme depicted in Figure 2.
The elements of class A were ranked in the following order of increasing validity: a, A-, A, AA, AAA. For peptides with the rank AAA (the most reliable), Mascot has identified sequences with an above-threshold score. Furthermore, by using the complementary and golden pairs extracted from the MS/MS data, RSTs were derived and compared to the Mascot data. An agreement with the Mascot suggested sequence ensured that no misidentification due to the mix-up of b- and y-ions has occurred. Peptides with rank AA were also identified by using the complementary and golden pairs and Mascot had assigned a score above the suggested significance level, but an RST tag did not exist and the sequence direction could not be confirmed. Peptides with rank A were identified with below the threshold score, but they had an RST which complied with the sequence. Peptides with rank A- were fished out from the set of peptides with a Mascot score below the threshold and without an RST. This was done by researching the data for these peptides, but instead of using only the complementary/golden pair data, the pairs of masses from the PTF list with differences in mass which corresponded to amino acid combinations of mass <575 were searched. The peptides which by using this approach got an above-the-threshold Mascot score were ranked A-. Finally, the peptides ranked a were those which did not have complementary/golden pairs, but had S>2. These spectra were searched with Mascot using the fragments from the PTF set as for A- data and qualified if they got an above-the-threshold Mascot score. Table 1 shows the resulting statistics.

Validation of A-class ranking

Ideally, all found peptides should belong to the most valid class AAA. The worst case is when the majority is of low validity, a or A-. In reality, there is a distribution of ranks. As can be seen in Table 1, the amount of peptides in each rank decreases with decreasing rank. This is consistent with most identifications being true and valid. Indeed, correctly identified peptides would fail to pass one of the filters only because of a mishap, such as unfavorable statistics in the isotopic distribution. Such a mishap should be a low probability event, so two mishaps for the same peptide would be even less probable and so on. Consequently, if the bulk of the
peptides are correctly identified, the number of peptides should decrease for ranks of lower confidence, as in Table 1.

The average number of peptides per protein N_{pep} increases each time when the peptide set is extended by adding the peptides of the lower rank. This is an indication of the validity of peptide IDs in the lower ranks because if the added peptides were false positives, they would likely be distributed among unrelated proteins, and N_{pep} would decrease.

Validation of S-score threshold

As can be seen from the flowchart, (Figure 2) a total of four different filters were applied at various stages. The first one is simply a requirement for the S-score to have an above-threshold value of two. The justification for this value is deduced from Figure 3. In Figure 3, the S-score distribution is presented for MS/MS files of charge state 2+. The distribution (black columns) is clearly bimodal and has a distinct valley at $S=1$. The second distribution (light columns) in Figure 3 is that of MS/MS files for which complementary pairs exist. Note the relatively low abundances of $S=0$ and $S=1$ which supports the choice of $S=2$ as a threshold value. This distribution has a mean of 6.7. In Figure 4, the distribution of Mascot-identified (meaning Mascot suggested a sequence with any score) peptides (light columns) is plotted against the complementary pair distribution (black columns). The mean of the Mascot-identified distribution is clearly shifted toward higher values (mean of 7.4) and also supports the choice of $S=2$ as a threshold. No peptides with scores above $M=34$ were lost using the $S=2$ cutoff. The highest scoring Mascot identification that was discarded had an M-score of 21. We should note here that Mascot searches were made against the non-redundant database and with oxidation of methionin chosen as the only viable modification and so peptides with other modifications have no chance of being correctly identified. These peptides could account for the difference between the “complementary pairs exist” and the “Mascot found” distributions. The fact that this difference (data not shown) has a significantly lower mean (4.7) could be due to the generally inferior fragmentation of modified peptides.
Reliable Sequence tag

The RST filter is in our opinion the most powerful filter in terms of verification. The maximum step length of the tag, 398 Da, is below the value 575 Da selected for the S-score. It was chosen in order to reduce the number of different amino acid combinations which can fit into a given interval, and thus increase the S-score applicability to smaller peptides. The value 398 Da is one dalton below 399 Da which is the nominal mass of seven glycines ensuring that the number of amino acids will not exceed six.

Figures 5 a) and b) show the same two distributions plotted differently. The first is the total distribution of peptides for which Mascot suggested a sequence (black columns), and the second is the distribution of peptides for which a sequence was suggested and an RST existed (light columns). Here the RST existed in 40% of the cases. Note that, while the average S-scores were similar for both distributions (Figure 5a), the average M-score for the RST-backed distribution was much higher (38 vs 27). Only 41% of the total distribution is above the Mascot-suggested threshold of 34, while 69% of RST-containing spectra gave hits above this threshold. Thus the mere presence of RST increased the probability of positive ID by Mascot by more than 50%.

Note in Figure 5b that the RST-distribution seems to have abnormally high values at low M-scores. This phenomenon is explained by Figure 6, which shows how the RST distribution partitions into two different distributions, one that confirms the Mascot suggested sequence and one that conflicts with it. If we assume that the part of the conflicting distribution which stretches past the 95% significance level of M=34 is entirely due to the shortcoming (incorrectness) of the sequence tag and evaluate the reliability of the RST as a quotient between the number of “wrong” RSTs and “correct” RSTs (those that complied with the Mascot-suggested sequence), the reliability of the RST would be 98.6%. However, since the above assumption that the conflict is solely due to the shortcoming of the RST is certainly
wrong (the reliability of Mascot-suggested sequences is only 95%), the actual reliability of RST is surely higher than 98.6%.

The benefits of the RST tag are twofold. It confirms the direction of the Mascot-suggested sequence which is important since a common cause for false positives is the mix-up of y and b ions (this becomes obvious when conducting reverse database searches (22,23)). The RST also ensures that the ions which are its building blocks have not been omitted by Mascot when selecting the sequence from the database. Since the probability of these ions being noise peaks or peaks not related to the peptide is so small (≈1.4%), their absence in the Mascot-suggested sequence is an almost sure sign of a false positive. In summary, we found an RST for 40% of the Mascot-identified MS/MS data (17% of all MS/MS data) and the reliability of the identifications supported by these tags is estimated to ca. 98.6%.

Revealing modifications with RST

As an example, the peptide LFSVVADDR was identified by Mascot with a below threshold M-score of 13. The S-score was however rather high, \(S=7\) and the spectra contained 12 complementary pairs of fragments. Moreover, RST existed, and gave possible sequences \([\text{AY}][|][\text{HP}][][\text{FS}][][\text{Sm}][l(V+A)(D)(D)[\text{RV}][|][\text{AAI}][|][\text{GIV}]\]). In this notation, the amino acids in square brackets do not have a defined order, e.g. \([\text{AY}]\) could in reality be both \(\text{AY}\) and \(\text{YA}\). The \(|\) sign means OR i.e. \([\text{RV}][|][\text{AAI}][|][\text{GIV}]\) means that at the C-terminal sequence could be \(\text{RV}\) or \(\text{AAI}\) or \(\text{GIV}\), with I either leucine or isoleucine. Thus this RST is consistent with many possible sequences, for instance PHLVADDAIA or YAIIVADDVR. However, the Mascot suggested sequence was not among them, thus conflicting with the RST.

In the conflict between RST and Mascot, RST is likely to be more trustworthy, and thus such spectra must be searched in an extended database allowing for modifications/mutations. Since the RST suggests the presence of at least two aspartic acids, it is logical to assume the possibility of deamidation (24). Indeed, a Mascot search allowing for this modification gave a positive identification with an \(M=72\), which sequence YAIIVANDVR successfully fitted all 12 complementary fragment masses. This peptide is present in an \(E.\ coli\) protein that was
additionally identified by at least two unmodified peptides. As additional evidence of modification/mutation, the unmodified sequence was also identified from a different dta file with M=62. This example shows the potential of using the RST to detect modifications and mutations.

Connection between S-score and M-score

The S-score is database-independent and reflects how successful the peptide backbone fragmentation was. Mascot tries to fit the fragmentation pattern to a tryptic peptide in the database and the score reflects the probability of achieving a match of a given quality at random when searching the database.

The S-score and M-score are not however completely independent, because both increase when the number of true backbone fragments in an MS/MS spectrum increases. Thus one can expect a statistical correlation between M- and S-scores, which is interesting to derive as it could be used for a priori prediction of the M-score for individual spectra before a database search. A straight-forward correlation between the S-score and M-score is low, with R=0.37 (25), Figure 7a. This correlation is however significant given the large amount of data points, >14000 (26), There appears to be a bifurcation of the data, which is visibly detectable for high S values. In Figure 7b, the dta-files with S-score above 7 were selected and their M-score distribution plotted (black columns). Clearly, the distribution is bimodal. The distribution with the lower mean, (A) could arise if Mascot fits data to the wrong peptide. This can happen if the true peptide is either not present in the database or modified, in either case the fit Mascot makes would most likely be a poor one utilizing only part of the available data and thus resulting in a low M-score. To test this hypothesis we looked at the distribution of dta-files for which an RST was found, Figure 7b (light columns) and then identified the files (Figure 7c) for which the RST affirmed the Mascot-suggested sequence (black columns) and for which it conflicted with the suggested sequence (light columns). As predicted, the low M-score distribution consisted mostly of false positives, while the high M-score distribution
consisted mostly of correct identifications. Here false positive IDs were likely due to mutated and/or modified peptides. The ratio between the two distributions in Figure 7c is 1:3. We believe that this ratio reflects the relative content of mutated and/or modified peptides in the test mixture. The relatively large content (~24.7%) is not surprising, given high rate of mutations in \textit{E. coli}.

The following picture now takes shape. In figure 7a, there is at least one “true” and one “false” M-score distribution. For low S-scores, the means of these distributions are close and are not visibly resolved. However, for higher S-scores the mean of the “true” distribution grows and the distance between the two distributions increases. The shape of the distribution of data for which an RST exists and confirms the Mascot-suggested sequence should be representative of the form of the “true” distribution. Thus the data with an RST that confirms the Mascot prediction should give a better correlation between the S-score and M-score. Indeed, Figure 7d shows that for such data the correlation increased dramatically from 0.37 to 0.61. A linear function which passes through the origin and fits the data gives a correlation of 0.60 and incline of 6.7. This implies that, for correct Mascot identifications the average Mascot score is around $M = 6.7 \times S$. Thus the threshold value of $S=2$ corresponds to $M=13.4$.

\textit{Connection between S-score and precursor abundance}

Naturally one would expect that the extent of detectable fragmentation of a peptide should relate to its precursor abundance. Indeed, for an abundant precursor, more fragment ions will have a chance of making it over the noise level. Thus for higher S-scores, a higher average precursor abundance should be expected. Figure 8a shows the distribution of precursor abundances in our data. The distribution scales as to $1/abundance$, although the automatic gain control (AGC) mode was used, which was supposed to accumulate the same number of precursors in each scan. Without AGC, the slope would be much steeper (with an ideal AGC, the distribution would be flat). Figure 8b shows how the average precursor abundance increases with the S-score. The increase from $S=0$ to $S=2$ is comparatively slow followed by
a steep almost linear increase from $S=2$ to $S=5$. At $S=5$ a saturation occurs. The curve again suggests that $S=2$ is a logical threshold value. At $S=2$, the average intensity of precursor ions is ca. 30000. It is tempting to suggest simplifying the analysis by using this intensity value as a threshold instead of $S=2$. This, however, is not a good idea. In Figure 8c, d the distribution of S-values is plotted for the abundance intervals of precursor ions between 20000 and 30000 as well as 30000 and 40000. The bimodality of these distributions implies that a simple threshold for intensity values is not enough to discriminate between “good” and “bad” spectra. The bimodality is likely due to the presence of non peptide precursors for which the abundances do not have to be low to produce low S-scores.

Discussion

Two new concepts are introduced and their benefits made clear. The database independent S-scoring enables data pre-filtering, classification and improves peptide and consequently protein identification. The combined use of M- and S-scoring provides positive sequence identification from $>25\%$ of all MS/MS data, a 40\% improvement over traditional M-scoring performed on the same Fourier transform MS instrumentation. The number of proteins reliably identified from *E. coli* cell lysate increased by 29\% compared to traditional CAD-only, M-score approach. S-scoring provides a quantitative measure of the quality of fragmentation techniques, such as the minimum abundance of the precursor ion, MS/MS of which gives the threshold S-score value of two. The calculation of the S-score is straightforward and fast which makes it suitable for online evaluation of the quality of peptide fragmentation. The RST reveals a significant part of the false positive distribution and improves the reliability of peptide identifications with below-threshold Mowse score. Furthermore, the identification of RST tagged peptides which were falsely or not at all identified by Mascot can be pursued by alternative means utilizing the highly reliable tag. The high reliability and usefulness of the RST gives yet additional motivation for a broad use of orthogonal fragmentation techniques in proteomics.
Acknowledgements

This work was supported by the Wallenberg Consortium North grant (WCN2003-UU/SLU-009) (to R. A. Z.). The purchase of the LTQ FT instrument was supported by the Knut och Alice Wallenbergs Stiftelse grant to R. A. Z. and Carol Nilsson. Christopher M. Adams, Frank Kjeldsen, Thomas Köcher and Oleg Silivra are acknowledged for fruitful discussions.
References

Figure legends

Figure 1: a)-e) Distributions of S-scores of the acquired data for different ΔM_s values. e) $\Delta M_s=700$ Da, but the peptide mass is not included in the PTF set for each dta-file. f) The figure-of-merit curves of the two different criteria for ΔM_s estimation, solid line corresponding to criterion 1 and dashed line to criterion 2.

Figure 2: Flowchart for the data processing procedure. The MS/MS data is sorted into three classes: A (identified by Mascot), B (good spectra, not identified by Mascot) and C (bad spectra no identification). The class A data is ranked according to its validity.

Figure 3: Distribution of S-scores of all dta-files (black columns) versus the distribution of S-scores for dta-files from which complementary pairs were derived according to equations (1-5) (light columns).

Figure 4: Distribution of S-scores for dta-files from which complementary pairs were derived (black columns) versus the distribution of S-scores for dta-files for which Mascot found a peptide sequence (light columns).

Figure 5: a) Distribution of S-scores for dta-files for which Mascot found a peptide sequence versus the distribution of S-scores for dta-files from which a reliable sequence tag (RST) was derived. b) distribution of Mowse scores for dta-files for which Mascot found a peptide sequence versus the distribution of Mowse scores for dta files from which an RST was derived.

Figure 6: Distribution of Mowse scores for dta-files for which the Mascot suggested peptide sequence was confirmed by the RST (black columns) versus the distribution of Mowse scores for which the Mascot suggested peptide sequence was rejected by the RST (light columns).
Figure 7: a) A scatter plot showing the correlation between the S-score values and Mowse score values of all dta files for which Mascot found a peptide sequence. b) The Mowse score distribution of all dta-files with S>7 and for which Mascot found a sequence (black columns) versus the subset of this distribution for which an RST existed (light columns). c) The part of the light columns distribution in b) for which the RST confirmed the Mascot suggested sequence (black columns) versus the complementary part to the same distribution for which the RST rejected the Mascot suggested sequence (light columns). d) A scatter plot showing the correlation between the S-score values and Mowse score values of all dta-files for which Mascot found a peptide sequence and from which an RST was derived and confirmed the Mascot sequence.

Figure 8: a) The distribution of precursor abundances for all dta-files. b) Relation between the S-score of peptides and their average precursor abundances. c) The distribution of S-scores for dta-files with precursor abundances between 20000 and 30000. d) The distribution of S-scores for dta-files with precursor abundances between 30000 and 40000.
<table>
<thead>
<tr>
<th>Class</th>
<th>Rank</th>
<th>% of total MS/MS</th>
<th>Sum of identified Proteins/increase/%</th>
<th>N_{pep}/increase/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>AAA</td>
<td>10.4</td>
<td>157/157/100</td>
<td>5.06/5.06/100</td>
</tr>
<tr>
<td>A</td>
<td>AA</td>
<td>7.5</td>
<td>224/64/28.2</td>
<td>6.12/1.06/17.3</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>4.5</td>
<td>262/38/18.3</td>
<td>6.39/0.20/3.1</td>
</tr>
<tr>
<td>A</td>
<td>A-</td>
<td>2.6</td>
<td>286/24/8.4</td>
<td>6.78/0.39/5.8</td>
</tr>
<tr>
<td>A</td>
<td>a</td>
<td>0.3</td>
<td>288/2/0.7</td>
<td>6.86/0.08/0.12</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>39.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>35.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Results of MS/MS data classification and ranking according to the procedure shown in Figure 1.
Figure 1

- **a)** $\Delta M_s = 200$ Da
- **b)** $\Delta M_s = 400$ Da
- **c)** $\Delta M_s = 500$ Da
- **d)** $\Delta M_s = 700$ Da
- **e)** $\Delta M_s = 700$ Da
- **f)** Figure of merit, det. units

25
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

\[y = 8.6485 + 3.6281x \quad R = 0.37351 \]

\[y = 4.5952 + 6.0177x \quad R = 0.60713 \]
Figure 8